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BETWEEN A ROTATING AND A STATIONARY DISC
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Abstract—This paper describes how Dorfman’s [1] application of the Reynolds analogy for the free disc
can be extended to include the effects of frictional dissipation in compressible or incompressible flow. For
turbulent flow the ‘effective’ Prandtl number is taken to be unity, and the radial and tangential ‘effective’
viscosities are assumed to be equal. The adiabatic disc temperature is found to be identical with that obtained
by previous authors [6, 7] for laminar flow and a unity Prandtl number, and is consistent with a flat plate
adiabatic temperature. It is shown that under certain conditions the Reynolds analogy can be applied to a
disc rotating near a stator, with and without a superimposed radial outflow of fluid. For the case of a forced
outflow, the Reynolds analogy is applied to measured moment coefficients and shows that the Nusselt
number is controlled by mass flow rate at high ratios of radial Reynolds number to ratational Reynolds
number, and is governed primarily by rotational Reynolds number at low Reynolds number ratios.
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NOMENCLATURE

constant of proportionality in disc
temperature distribution;

moment coefficient for both sides of
the rotating disc, =2M/(Gpw’r);
moment coefficient for stator-side
of the rotating disc, = M/(3pw?ry);
specific heat at constant pressure;
mass flow coefficient, = W /(ur,);
gap ratio, =s/rg;

shroud clearance ratio, =s,/r,;
total enthalpy;

moment on free side or stator-side
of rotating disc, respectively;
exponent in disc temperature distri-
bution;

local Nusselt
[Ty — Ty, 0));
average Nusselt number, =g ,.7/
['1(76 - %,ad)av] >

static pressure ;

laminar and turbulent Prandtl num-
bers, respectively ;

heat flux;

arbitrary radius and disc radius,
respectively ;

number, =g,r/
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Re,

Re,

<X

'1’ 'q'eff’

B l"'r. effs

Ho, eft >
v,

P
TpaTgs

rotational Reynolds number,

= por?/u;

radial to rotational Reynolds num-
ber ratio, =C,,/(2rGRe);

axial clearance between rotor and
stator and rotor and shroud, re-
spectively;

absolute temperature ;

radial, tangential and axial velocity
components respectively ;
superimposed mass flow rate;
axial distance normal to rotor;
thermal diffusivity, =i/(pC,);
volume expansion coefficient,
=—1/p(0p/0T),;

radial coordinate ;

dimensionless temperature,

=(T - TT, — T,,);

laminar and ‘effective’ thermal con-
ductivity, respectively ;

laminar, and ‘effective’ radial and
tangential viscosities, respectively ;
kinematic viscosity ;

density;

radial and tangential shear stress
components, respectively ;
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b, dimensionless velocity, = V,/(wr); av, v, Vv dp o1,
v, stream function : P V'_c‘;r_ + Ve & r ) T adr t @
o, angular velocity of the rotating - ,
. ov, oV, Vi,V Y
disc. p(v22 4y, Qe Yeln) T (3
or 0z r 0z
Suffixes oT oT
ad, adiabatic; pC, (’rFr_ + Vzé‘;)
av, radially-weighted average
eff, effective, in turbulent flow; dp &¢g év, ov,
. . ’ —_ r ¢
o. pertaining to the rotor; =VTBg st o g W
r,¢,z,  radial, tangential and axial direc-
tions, respectively;
s, pertaining to the stator;
t, turbulent condition ;
x>, pertaining to the free stream (free

discs).
1. INTRODUCTION

THE REYNOLDS analogy has two roles in the field
of heat-transfer: it provides an idealised theo-
retical model that can serve as a datum for more
complicated mathematical models, and it can
be readily modified to allow estimates of heat-
transfer to be made from fluid dynamics data,
which—in general—are easier to obtain than
heat-transfer data. The rotating disc can serve
as a simple model of a turbine rotor, and by
using the analogy between heat and momentum
it is possible to lay the foundation for heat-
transfer predictions in the more complex turbine
system. It is therefore instructive for the engineer
to know under what circumstances the analogy
can be used for rotating disc systems, and to have
an estimate of the effect of such parameters as
the clearance between the rotor and its housing,
coolant mass flow rate, and rotational speed
on the heat-transfer from a turbine rotor.

2. THE BOUNDARY LAYER EQUATIONS
For steady axi-symmetric flow over a rotating
disc the continuity equation, the radial and
tangential momentum equations and the energy
equation can be written as:

0 d
g;(prV;) + ég(per) =0 (1

For turbulent flow, the shear stresses and axial
heat flux can be expressed as:

av
T, =p——— pV,V. (5)
0z
v,
T = st = VY, (6)
oT N
4= ko —pC,TV) )

where the primes denote the turbulent terms, and
all values are time-averaged.

It will now be shown that a strong analogy
exists between equations (3) and (4)-

3. THE REYNOLDS ANALOGY APPLIED TO THE
FREE DISC, NEGLECTING FRICTIONAL
HEATING

Dorfman [1] placed the Reynolds analogy on
a firm mathematical basis for the free disc,
shown in Fig. la, by showing that a strong
similarity exists between the energy equation
and the tangential momentum equation. This
similarity can be best seen by defining a dimen-
sionless temperature @, where @f(r,z)=
(T - T )Ty — T,), T, and T, being the disc
temperature and the free stream temperature
respectively, and a dimensionless velocity, @.
where @ (r, z) = Vy/(wr).

It is further assumed that the free stream has
zero velocity and is isothermal, and that the disc
temperature is quadratic such that T, = cr’.
where ¢ is constant. Under these conditions
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equations (3) and (4) can be rewritten for in-
compressible flow (B = 0), with zero dissipation,
as

V,‘32+2<1>5+Va ag(va_qz_ d>V>(8)

or r * 0z 0
00 @ o0 (00 9)
Voo +20% ItV = (az @V)(
As the boundary conditions are identical for
both equations, such that &(r,0) = @(,0) =1
sk

e | o s S
_ﬁ_ =C

I L
(a) Free disc (b) Enclosed disc

“{ ¢ I" Shroud%‘ [
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(d) Disc rotating near a
shrouded stator
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Stator Rotor Rotor

{c) Disc rotating near an
unshrouded stator

FiG. 1.

and ®(r, o) = O(r, ©) = 0, and if the Prandtl
number is unity such that v = « the solutions of
equations (8) and (9) will, for similar initial
conditions, be identical so that &(r, z) = O(r, z).
This result, obtained by Dorfman, implicity
assumes that the turbulent Prandtl number,
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Pr,, is unity, where

- 0%,
V¢V/8z

Pr,=———.
T
T'V'/a

(10)
0z

The variation of Pr, across a boundary layer
has been discussed by Kestin and Richardson
[2], and it is a useful expedient to regard Pr,
as constant. As equations (8) and (9) are so
strongly related, and are further constrained
by their boundary conditions, the assumption
that Pr, should be unity does not seem unreason-
able. Under these conditions it follows that the
local heat flux can be determined by

_ Ciy(T-T,)

wr

The local Nusselt number can be defined by
Nu = qor/[MTy — T, a4)], and the average Nus-
selt number by Nu = qo o7/[UTy — To,sa)av]s
where g, is the heat flux at the disc surface, and
the sufiixes ad and av refer to the adiabatic and
radially-weighted average values, respectively.
As frictional heating has been neglected, the
adiabatic disc temperature T o is obviously
equal to T,. From these definitions it follows
that:

Nu = —Re p::;’r . (11)
and
— R
Nu = ;:"' (12)

where the rotational Reynolds number is defined
as Re = wr?/v and the moment coefficient as
C,, = 2M/3pw?r®), where M is the frictional
moment on one side of the disc. For local Nusselt
numbers, r is the local radius, whilst for average
values it is usual to take r = r,, the disc radius.

Dorfman also made allowances for the in-
fluence of Prandtl number and the effect of other
temperature profiless on the Nusselt number.
Using Cochran’s [3] moment coefficients for
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laminar flow and Karman’s [4] for turbulent
flow, equation (12) was shown to give good
agreement with the experiments conducted by
Cobb and Saunders [5] on an isothermal free
disc rotating in air.

4. THE REYNOLDS ANALOGY APPLIED TO THE
FREE DISC, INCLUDING FRICTIONAL HEATING

In order to extend the Reynolds analogy to
compressible flow systems where frictional
heating is significant, it is convenient to employ
the von Mises transformation using the stream
function, i, where

1 oy

Ly
- pr or

g V. =
o Bz and V,

r

Equations (2){4) can be written in &, ¢ co-
ordinates, where & = r, such that:

ov, Vi 1dp ot
r_ "% _ _ i o 1
AN AR TR VI
8V¢ V¢ 514,
e, e 1
o¢ r 6!// (14)
oT _TPdp oq oV,
Croe=") a ’< FYRMAEY
oV
+ 1, ﬁJ) (15)

Using equations (13) and (14) to replace the
dissipation terms in equation (15) it follows
that:

oT _(Th—1dp ,
Coag = Bty ma
+ Votg) — ( aaz +Ve 6;?) (16)

It is now necessary to make some assumptions
concerning the turbulent fluxes, and it is con-
venient to introduce the effective transport
properties Aqg, fg ofr AN, o Where

8T  ———\ /0T
— hel 1Y’ hiinll 17
M“G& w;@az()
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av, —\/0V,
He, efs = (ﬂ—af - PV¢Vz) "a—; (18)
. )@V
#r,eff = ( a 6Z (19)

For the case of a unity Prandtl number it will be
assumed, as in Section 3, that Pr, is also unity,
which implies that:

Aett = Cp/l.», eff- (20)

In the calculation of moment coefficients for
the free disc [1, 4] it is assumed that the radial
and tangential shear stress on the rotating disc
are in the ratio of the radial and tangential
velocity components near the surface. This
implicity assumes that u, . = py o and s0
for convenience these effective viscosities will
be assumed equal to a common value, fi g and
equation (16) can be rewritten for a unity
Prandtl number (where i ¢p = Aege/Cp) as

0 1 — Tp\dp
Z(C,T+3v2 iy 4 (20 \2R
66(” “’J”"’H( p )dé

J
=r— [prl{umb—‘p(CPT +4ivz 4+ %Vi)] (21

Equation (21) can be considerably simplified for
the case of an incompressible fluid, where § = 0,
and for a perfect gas, where 8 = 1/T. For each
of these cases it is convenient to introduce a
total enthalpy, h, where:

h=C, T+ iV +
h=C,T+3V}+

3V : perfect gas
3V% + p/p: incompressible

fluid
and equation (21) can be rewritten as:
oh, 0 0
22
ac 6!# [p V.ueff al//] ( )

In order to show the similarity between this
energy equation and the tangential momentum
equation, equation (14) can be expressed as

0 ) 0
%(’V@ = rW [P"K#eff‘(v("V(p)]- (23)
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The analogy between equations (22) and (23)
is complete if the initial and boundary con-
ditions are similar, such that:

Y= Yo Vo =or? hy =cr?
Y=YtV =0,

Under these conditions, the distribution of
tangential velocity and total enthalpy will be
similar, and as a consequence:

F-h, Y,

h, = constant.

— % 2
o=k, or @9
In particular
0
4=~ tar5(G,T)
oh
= " g + Wz, + Vg
whence from equation (24)
ho —h
q="Var, + Vyr, — —°Eor—°°z¢. (25)

On the rotating disc the heat flux is given by:

T ;
9o = — L2 [CT, - T,) — Jo*r?]  (26)
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which leads to the important result that for the
case of g, = 0 the adiabatic disc temperature,
for an incompressible fluid or a perfect gas,
Tp, aas is given by:

To,ea = T, + 300%1%/C,, 27

This result agrees with the findings of Riley
[6] and Mabuchi et al. [7], who solved the
incompressible laminar energy equation for
the free disc. It is interesting to observe that
To,=a is unaffected by the radial velocity, and
corresponds to ani adiabatic plate temperature
for a free stream velocity of wr.

As a consequence of equation (26) it is
apparent that the Nusselt numbers given by
equations (11) and (12) are valid, within the
limits of the assumptions made, even when
frictional heating is significant, providing equa-
tion (27) is employed for the adiabatic disc
temperature used in defining the Nusselt num-
bers.

5. THE REYNOLDS ANALOGY APPLIED TO A

DISC ROTATING NEAR A STATOR

The turbulent free disc analysis of Karman
has been extended by Schultz-Grunow [8]
and Daily and Nece [9] to produce moment
coefficients for the enclosed disc, illustrated
in Fig. 1b. Also Bayley and Owen [10] and

Table 1. Moment coefficients and Nusselt numbers for forced radial outflow between a rotating and a stationary disc

Author  Measurements Empirical correlation Range
Sedach Moment . -02 , 0-5 01<G <60.3 6
edach [11] e ts  Cmo = 0078 Re™®? + 0:127(Cy/GRe)’* G 025 x 10° < Re < 17 x 10
0 < Re, < 0059
Kreithetal M85 Nu = GG)°5[1:36 + 129(Re/10°) + 35T(Re/10)’ g'°<12R:<G 4<x0.(1)(6)4
[12] (Pr=24)  —351(Re/10°)° + 1-84(Re/10°)*)(C,,/2nG)@ 037012 Re10%) (o7 Re, <
. Heat G =0113 o
Mitchy
Mol pansfer  Nu= 1223 17 % 10° < Cyy < 74 x 10%
(Pr = 0:72) Re, = 053,029,014
. Heat _ o 0016 < G < 0:06
Ka[r&raos transfer Nu = 00261 (Cy/GRe)* ! Re®8 GO0 0-5 x 10° < Re < 4 x 10°
Pr = 072) 0012 < Re, < 0'1
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Sedach [11] have measured moment coefficients
for the case of a disc and stator with a radial
outflow of coolant, as illustrated in Fig. lc.
For the latter case, it has been shown that for
small gap ratios (G < 01, where G = s/r) the
whole space between the rotor and stator can
be treated as a boundary layer. Whilst it is
not necessarily true that g, ¢ = py, o for the
case of a radial outflow of fluid, in practical
cases—such as air-cooled turbine rotors—the
tangential velocity component is usually larger
than the radial component. Near the turbine
rotor the dissipation due to the radial com-
ponents is much smaller than that due to the
tangential component, hence the radial dissipa-
tion terms have very little effect on heat transfer.
Owen [15] has shown that equation (27) is still
valid if the radial dissipation terms are neglected,
but for convenience it will be considered that
L. ott = Mg, er SUch that the results of Section 4

-
Author I 7,5'_‘ 5.0 25
Kreithera/  [12) 5 E 3
mass transfer
Kapinos [ N U N G S
heat transfer
Sedach | e | =2 | =&
moment coefficient
6 Reynolds analogy ' 2 3
basedon I
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FIG. 2. Reynolds analogy applied to the moment coefficients
of Sedach: G = 0-06.
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will still be applicable. As the frictional moment
of the front—or stator side face——of the rotating
disc will not, for radial outflow, be equal to
that on the back—or free side—it is apparent
that equation (12) will only be valid if it is
modified to:

Nu =ReC,, /1 (28)

where C,, o = M,/(3pw?r}), M, being the fric-
tional moment on the stator-side face of the
disc.

T Tent ]
Author 88 55 41
Kreith et a/ 2] ] 2 3
mass transfer L R R
Kapinos {14} p 5
heat transfer pnanil Bt ;jo—_ {
Bayley and Owen i0] g & |
moment coefficlents . ]
s Reynolds analogy A U S
based on Al TR T S

Nu/o3

o

100 ¢,
o (o]

o @® - ~N
R B N A A | R
//

04|
L
02 S 1 i I S T | L I —
ol o2 o4 06 08 i 2 4
Re/10°

Fic. 3. Reynolds analogy applied to the moment coefficients
of Bayley and Owen: G = 0-03.
Owing to the assumptions made, equation
(28) will only apply for Pr=1 and for the
boundary conditions

z2=0:V, = or hy =cr?

z=s5:V,, =0, h, =constant.

ki
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However, in [15] it has been shown that where it is assumed that h, = cr”, c and n being
Dorfman’s corrections for the effect of disc constants.
temperature distribution and arbitrary Prandtl The experiments of Kreith et al [12],
numbers on the Nusselt number are reasonably Mitchell [13] and Kapinos [14], which are
valid for the case of a radical outflow. These summarised in Table 1, provide data for testing
corrections can be summarised for turbulent the Reynolds analogy applied to rotating discs
flow as: with radial outflow. The results of Kreith et al.
N ~ pp06 _ and Mitchell show little effect of rotational
Nu(Pr) = Pr® Nu(Pr = 1) 29) Reynolds number on the Nusselt number, but

_ n+ 26\%2 _ indicate that heat-transfer is governed primarily
Nu(n) = ( v Nu(n=2)  (30) by mass flow rate. On the other hand, Kapinos’
.3
Author 76 C“;;o 23
Kreith et /. [12] 4 % a

mass transfer

Mitchell 03] ) S 3
heat transfer == el Bl

Kapinos 14 [_ 4 | —Bm | B
heat transfer
Bayleyand Owen [[0]| _ e ———
momant coefficient
Reynolds anaiogy \ i 3
6 based on 0]
q
L)
e
3
2 2
i
|
08
06
2 oo
i
Q 2z
' -~
Q = 3
Qo 08r
o L
o6l
04l
1 I 1 T S W | i L I
Ol o2 o4 06 08 | 2 4

Re/10°®

FiG. 4. Reynolds analogy applied to the moment coefficients
of Bayley and Owen: G = 0-12.
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results show a marked effect of rotational
Reynolds number on heat-transfer, with only a
relatively smail increase due to mass flow rate.
For the Nusselt number to be independent of
Reynolds number it is necessary—according to
equation (28)—that C,, o, aRe™ . In a recent, as
yet unpublished, analysis [18] using the integral
momentum equations, solutions have been
obtained showing that for Re, > 0875,
Cp. o ®Re™ ! [where Re, = C,/(2nGRe) and C,,
= Wiury)]. The value of Re, > 0-875 stems
from mathematical rather than physical argu-
ments, but it is interesting to note from Table 1
that the values of Re, for the experiments of
Mitchell and Kreith et al. are larger than those
of Sedach and Kapinos. Hence, it is not sur-
prising that the Reynolds analogy applied to
the results of Sedach in Fig. 2 show similar
trends to the results of Kapinos. It should be
pointed out that in Fig. 2, and subsequent
figures, the effect of Prandtl number has been
accounted for using equation (29). Also, as the
experimental ranges of the various experiments
do not in general coincide, it has been necessary
to extrapolate results outside of their stated
range of validity.

Figures 3 and 4 show the Reynolds analogy
applied to the moment coefficients of Bayley
and Owen, and a definite transition between
the results of Kapinos and Kreith et al. can be
seen. Mitchell’s results, strictly valid for G =
0-113, are shown in Fig 3 to lie below the
results of Kreith et al. Despite the fact that the
experimental ranges do not coincide, the Rey-
nolds analogy points out the transition between
the rotation dominated regime and the area
controlled by mass flow rate.

For the case of axial flow turbines, the con-
figuration shown in Fig. 1d is a model of an
air-cooled turbine rotor where peripheral
shrouds are used to control the egress of
coolant and to prevent the ingress of hot gases.
The fluid dynamics of this system have been
investigated [17], and whilst the presence of a
shroud invalidates the boundary layer assump-
tions, a qualitative guide to heat-transfer should

J. M. OWEN

be gained by applying the Reynolds analogy
to measured moment coefficients. The expected
trends are shown in Fig. 5, where the effect of
decreasing the clearance ratio G, (where
G, = s./r,) is to increase the moment coefficients
and hence the Nusselt numbers. It should be
pointed out that the advantage of increased
Nusselt number at small clearance ratios is
likely to be offset by the increase in frictional

3

Nu/10

100 Cpo

i L
02 04

Lo i) A L Lol
o6 08 | 2 4 6

Re/I0°

F16. 5. Reynolds analogy applied to shrouded disc: G = 0-12.

heating due to the presence of the shroud, and
the adiabatic disc temperature given by equa-
tion (27) will not be valid.

6. CONCLUSIONS
This paper has been described the application
of the Reynolds analogy to rotating disc
systems, and the principal conclusions to be
drawn from this work are:

(1) The Reynolds analogy can be applied to
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the free disc when frictional heating is significant
if

(i) the laminar and turbulent Prandtl num-
bers are unity;

(ii) the disc temperature varies quadratically
with radius and the total enthalpy of the
free stream is constant;

(iii) the ‘effective’ radial and tangential vis-
cosities are equal;

(iv) the initial tangential velocity and total
enthalpy distributions are similar.

Under these conditions, the average Nusselt
number, Ny, is related to the moment coefficient,
C,» by Nu = ReC,/(2m); and for compressible
or incompressible fluids the adiabatic disc
temperature is related to the free stream tem-
perature by: T, o4 = T,, + 30?*r?/C,.

(2) The Reynolds analogy can be applied to
the totally enclosed rotating disc, or the disc
rotating near a stator with a radial outflow of
coolant, if conditions (i), (ii), (iii) and (iv) apply—
with the exception that the total enthalpy on
the stator surface is constant. For the case of a
forced outflow between a rotating and stationary
disc, the mean Nusselt number is related to the
moment coefficient of the stator-side rotor
face, C,,, by Nu = ReC,,/m, and the adiabatic
disc temperature is related to the stator tem-
perature by T;, g = T, + 3w*r%/C,.

(3) The Reynolds analogy applied to measured
moment coefficients for the case of a forced
radial outflow between a rotating and a sta-
tionary disc shows that the Nusselt number is
controlled principally by mass flow rate when
the ratio of radial to rotational Reynolds
number, Re,, exceeds a certain value (approxi-
mately, Re, > 0-875) and by rotational Reynolds
number for Re, less than the critical value.
Nusselt numbers calculated in this way form a
transition between heat transfer measurements
at low Re, and the measurements at high Re,.
For the case of a shrouded disc, the Nusselt
numbser is expected to increase with decreasing
shroud clearance—for a given mass flow rate—
but the advantage of larger Nusselt numbers
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will be partially offset by an increase in frictional
heating and higher adiabatic disc temperatures.
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L’ANALOGIE DE REYNOLDS APPLIQUEE A UN ECOULEMENT ENTRE UN DISQUE
TOURNANT ET UN DISQUE FIXE

Résumé—Cet article montre comment on peut élargir le principe de I'analogie de Reynolds appliqué
par Dorfman [1] & un disque libre, de fagon 4 tenir compte des effets de dissipation par frottement dans un
¢coulement compressible ou incompressible. Pour un écoulement turbulent le nombre “effectif” de
Prandtl est pris égal 4 'unité, et on suppose égales les viscosités radiales et tangentielles “effectives”. La
température adiabatique du disque trouvée correspond & celle obtenue antérieurement par les auteurs
[6, 7] pour un écoulement laminaire et un nombre de Prandtl unitaire, et est en accord avec la température
adiabatique d’une plaque plane. On montre que, sous certaines conditions, il est possible d’appliquer
I'analogie de Reynolds & un disque tournant prés d'un stator, avec ou sans écoulement radial surimposé du
fluide. Dans le cas d’un écoulement forcé, I'analogie de Reynolds appliquée a des coefficients mesurés
montre que le nombre de Nusselt est contrdlé par le débit massique pour des rapports élevés du nombre
de Reynolds radial au nombre de Reynolds rotationnel, et qu’elie dépend en premier du nombre de Rey-
nolds rotationnel pour des faibles rapports des nombres de Reynolds.

DIE REYNOLDS-ANALOGIE, ANGEWANDT AUF DIE STROMUNG ZWISCHEN EINER
ROTIERENDEN UND EINER FESTSTEHENDEN SCHEIBE

Zusammenfassung—Diese Abhandlung beschreibt die Anwendung der Reynolds-Analogie nach Dorfmann
(1)ftir einefreie Scheibe, um Reibungseffekte in kompressibler und inkompressibler Strémungeinzubeziehen.

In turbulenter Stromung wird die effektive Prandtl-zahl gleich eins gesetzt. Die effektiven Zihigkeiten
in radialer und tangentialer Richtung werden einander gleichgesetzt. Die adiabate Scheibentemperatur
erweist sich als identisch mit den Ergebnissen fritherer Autoren (6) (7) fur laminare Strémung und einer
Prandtl-zahl gleich eins und als Gbereinstimmend mit der adiabaten Temperatur einer ebenen Platte. Es
wird gezeigt, dass unter gewissen Bedingungen die Reynoldanalogie auf eine in der Nihe des Stators
rotierende Scheibe angewandt werden kann, mit und ohne einer radial nach aussen @iberlagerten Stromung
des Fluids. Fiir den Fall einer erzwungenen Strdmung nach aussen wird die Reynoldsanalogie auf die
gemessenen momentanen Koeffizienten angewandt Es zeigt sich, dass die Nusselt-Zahl bei grossen Ver-
hiltnissen von radialer Reynoldszahl zur Reynoldszahl der Rotation vom Massenstrom und bei niedrigen

Reynoldzahlen vorwiegend von der Reynoldszahl der Rotation bestimmt wird.

NMPUMEHEHUE AHAJIOTMUM PEHHOJIBACA K TEYEHMIO MEHAY
BPAUIAIOIMMCA U HENOJABUHHBIM JAUCHOM

Annoranua-—Iloxkasano, Kak NpuMeHeHHWe aHAIOTHM Pefinoapica K cBOGOZHOMY AMCRY,
npepnomennoe Jopdmanom (I), MomeT 6HTH pACUIMPEHO, BRIIOYAH BIMAHHE AMCCHNALAY
TpeHReM B CHHUMAEMOM HJIH HECHIMaeMoM noroxe, GHenano JonymieHHe, 4T Aus TypOynes-
taore motoka «adderTuBHoes yuciao Ilpamprian pasHO exummMUe, 2 paAMaAbHAA ¥ TaH-
reHuuanbHan «3@PeHTUBHAn » BASKOCTE paBHH. Haltjeno, 4o anuabaTuvecKas TeMneparypa
AUCKA TOMIECTBeHHA TeMIeparype, NoiyueHHol apropamu pamee (6), (7) nua namunapuoro
notoxa mpu umcae Ipannras I, n cormacyeres ¢ apuabarunueckofl TeMmeparypoll niockoi
nuacTvHEE. IToKasaHo, YTO NPH ONpeAeNeHHHX YCHOBHAX aHANOTHA PeltHonbpca MOmer
GHTH IPHMEHEHA K AHCKY, BPAaoleMycs BO3JIe HENOIBHIKHOTO, C HAJIOMEHHEM PAXHATLHEIM
OTTOKOM KUFKOCTH 1 6e3 orroxa. JIuA caydas BHHYMKIEHHOrO OTTOKA aHajorus Pefinousaca
NPUMEHeHa K H3MEePEHHHM MTHOBeHHHM KoadduumenTam, 1 norasano, yro Yncno Hycceasra
3aBECHT OT MACCOBOH CROpOCTH TpM GONBIIMX OTHONICHMAX paguanbHoro ncsia Peitnonmaca
K BpPANIATENBHOMY UMeiy PelHONBACA ¥ ONPENPIAETCH, TIABHHM 00pa30M, BPAIATEThHEIM
yuesioM PeftHombAca MPH MAJIHX OTHOmIEHMAX yncen Pelfnoanaca.



