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Abstract-This paper describes how Dorfman’s [I) application of the Reynolds analogy for the free disc 
can be extended to include the effects of frictional dissipation in compressible or incompressible flow. For 
turbulent flow the ‘effective’ Prandtl mnnbgr is taken to be unity, and the radial and tangential ‘effective’ 
viscosities are assumed to be equal. The adiabatic disc temperature is found to be identical with that obtained 
by previous authors [6,7] for laminar flow and a unity Prandtl number, and is consistent with a flat plate 
adiabatic temperature. It is shown that under certain conditions the Reynolds analogy can be applied to a 
disc rotating near a stator, with and without a superimposed radial outBow of fluid. For the case of a forced 
outflow, the Reynolds analogy is applied to measured moment coefficients and shows that the Nusselt 
number is controlled by mass flow rate at high ratios of radial Reynolds number to ratational Reynolds 

number, and is governed primarily by rotational Reynolds number at low Reynolds number ratios. 

NOMENCLATURE 

constant of proportionality in disc 
temperature distribution; 
moment coefficient for both sides of 
the rotating disc, = 2M/&02r~) ; 
moment coefficient for stator-side 
of the rotating disc, = M,/(+po2r~) ; 
specific heat at constant pressure; 
mass flow coefficient, = W&rJ ; 
gap ratio, = s/r0 ; 
shroud clearance ratio, E sc/ro ; 
total enthalpy ; 

moment on free side or stator-side 
of rotating disc, respectively; 
exponent in disc temperature distri- 
bution ; 
local Nusselt number, zq,,r/ 

L&T, - G,ad)l ; 

average Nusselt number, E qO, =“r/ 

MT, - To,adM ; 
static pressure ; 
laminar and turbulent Prandtl num- 
bers, respectively ; 
heat flux ; 
arbitrary radius and disc radius, 
respectively ; 

Re, rotational Reynolds number, 
= pwr2/p ; 

Re, radial to rotational Reynolds num- 
ber ratio, 3 CJ(2nGRe) ; 

s, SE, axial clearance between rotor and 
stator and rotor and shroud, re- 
spectively ; 

‘I: absolute temperature ; 
V,, I’,‘,, V,, radial, tangential and axial velocity 

components respectively ; 
superimposed mass flow rate ; 
axial distance normal to rotor ; 
thermal diffusivity, = A/(pC,) ; 

volume expansion coeficient, 

= - ~IP(~PIJT), ; 
radial coordinate ; 
dimensionless temperature, 

=(T - T&MT, - T,); 
laminar and ‘effective’ thermal con- 
ductivity, respectively ; 
laminar, and ‘effective’ radial and 
tangential viscosities, respectively ; 
kinematic viscosity ; 
density ; 
radial and tangential shear stress 

componentq respectively ; 
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Suffixes 
ad, 
av, 
eff, 
0. 

r, 4, z, 

5 

t, 

Z’ , 

.I. M 

dimensionless velocity, E V+i(wr); 
stream function ; 
angular velocity of the rotating 
disc. 

adiabatic ; 
radially-weighted average ; 
effective, in turbulent flow ; 
pertaining to the rotor; 
radial, tangential and axial direc- 
tions, respectively ; 
pertaining to the stator; 
turbulent condition ; 
pertaining to the free stream (free 
discs). 

1. INTRODUCTION 
THE REYNOLDS analogy has two roles in the field 
of heat-transfer: it provides an idealised theo- 
retical model that can serve as a datum for more 
complicated mathematical models, and it can 
be readily modified to allow estimates of heat- 
transfer to be made from fluid dynamics data, 
which-in general-are easier to obtain than 
heat-transfer data. The rotating disc can serve 
as a simple model of a turbine rotor. and by 
using the analogy between heat and momentum 
it is possible to lay the foundation for heat- 
transfer predictions in the more complex turbine 
system. It is therefore instructive for the engineer 
to know under what circumstances the analogy 
can be used for rotating disc systems, and to have 
an estimate of the effect of such parameters as 
the clearance between the rotor and its housing, 
coolant mass flow rate, and rotational speed 
on the heat-transfer from a turbine rotor. 

2. THE BOUNDARY LAYER EQUATIONS 

For steady axi-symmetric flow over a rotating 
disc the continuity equation, the radial and 
tangential momentum equations and the energy 
equation can be written as: 

OWEN 

For turbulent flow, the shear stresses and axial 
heat flux can be expressed as: 

where the primes denote the turbulent terms, and 
all values are time-averaged. 

It will now be shown that a strong analogy 
exists between equations (3) and (4). 

3. THE REYNOLDS ANALOGY APPLIED TO THE 
FREE DISC, NEGLECTING FRICTIONAL 

HEATMG 

Dorfman [l] placed the Reynolds analogy on 
a firm mathematical basis for the free disc, 
shown in Fig. la, by showing that a strong 
similarity exists between the energy equation 
and the tangential momentum equation. This 
similarity can be best seen by defining a dimen- 
sionless temperature 0, where Oir, z) s 
(T - T,)/(T, - T,), To and T, being the disc 
temperature and the free stream temperature 
respectively, and a dimensionless velocity, @. 
where Q, (r, z) G V4/(w r). 

It is further assumed that the free stream has 
zero velocity and is isothermal, and that the disc 
temperature is quadratic such that To = cr’. 
where c is constant. Under these conditions 



THE REYNOLDS ANALOGY 453 

equations (3) and (4) can be rewritten for in- 
compressible flow (/I = 0), with zero dissipation, 
as 

As the boundary conditions are identical for 
both equations, such that @(I, 0) = O(r, 0) = 1 

(a) Free disc (b) Enclosed disc 

r, 

ocdant 
w 

_. - - - 
W clt- stator Rotor 

Cc) Disc rotating near 
unshrouded Stat01 

+- 
W 

ii- 

s tam Rotor 

(d) Disc rotating near a 
shrouded stator 

FIG. 1 

and @(r, 00) = @(r, a~) = 0, and if the Prandtl 
number is unity such that v = tl the solutions of 
equations (8) and (9) will, for similar initial 
conditions, be identical so that @(r, z) = @(r, z). 
This result, obtained by Dorfman, implicity 
assumes that the turbulent Prandtl number, 

Pr, is unity, where 

-3 
Pr, = 

= az 

i-7 cl- 

I . 

I 

(10) 
I I 

=az 

The variation of PI; across a boundary layer 
has been discussed by Kestin and Richardson 
[2], and it is a useful expedient to regard Pr, 
as constant. As equations (8) and (9) are so 
strongly related and are further constrained 
by their boundary conditions, the assumption 
that Pr, should be unity does not seem unreason- 
able. Under these conditions it follows that the 
local heat flux can be determined by 

= C,r,(T - L) 
’ - or . 

The local Nusselt number can be defined by 
Nu E q,-,r/[L(T, - _To, ti)], and the average Nus- 
selt number by Nu E q,,, ,,r/[A( To - To, ad)av], 
where q. is the heat flux at the disc surface, and 
the sufiixes ad and av refer to the adiabatic and 
radially-weighted average values, respectively. 
As frictional heating has been neglected, the 
adiabatic disc temperature To,, is obviously 
equal to T,. From these definitions it follows 
that : 

J/u=-& Zoo 
po2r2 (11) 

and 

ReC 
Nu=+ (12) 

where the rotational Reynolds number is defined 
as Re z or*,% and the moment coefficient as 
C, E 2M/(ipw*r’), where M is the frictional 
moment on one side of the disc. For local Nusselt 
numbers, r is the local radius, whilst for average 
values it is usual to take r = ro, the disc radius. 

Dorfman also made allowances for the in- 
fluence of Prandtl number and the effect of other 
temperature profiles on the Nusselt number. 
Using Cochran’s [3] moment coefficients for 
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laminar flow and Karman’s [4] for turbulent 
flow, equation (12) was shown to give good 
agreement with the experiments conducted by 
Cobb and Saunders [5] on an isothermal free 
disc rotating in air. 

4. THE REYNOLDS ANALOGY APPLIED TO THE 
FREE DISC, INCLUDING FRICTIONAL HEATING 

In order to extend the Reynolds analogy to 
compressible flow systems where frictional 
heating is significant, it is convenient to employ 
the von Mises transformation using the stream 
function, I/, where 

~=?-!?!d!~~dl/,=-~!!!!!~ 
pr a2 pr ar 

Equations (2)-(4) can be written in t. $ co- 
ordinates, where 5 z r, such that: 

(15) 

Using equations (13) and (14) to replace the 
dissipation terms in equation (15) it follows 
that : 

c EJTB- 1)dp 
p at 

+ ra(-q + Kzr 
P Z ati 

+v&J- (16) 

It is now necessary to make some assumptions 
concerning the turbulent fluxes, and it is con- 
venient to introduce the effective transport 
properties Aeffr p6, eff andp,, eff where 

&,eff = ( av, ___ ‘av, 
be& - pv;v; x az 

(18) 

/.Lr,eff s ( pz - pv;v; -7 5 az (19) 

For the case of a unity Prandtl number it will be 
assumed, as in Section 3, that Pr, is also unity, 
which implies that : 

kff = q-$,eff. (20) 

In the calculation of moment coefficients for 
the free disc [l, 43 it is assumed that the radial 
and tangential shear stress on the rotating disc 
are_ in the ratio of the radial and tangential 
velocity components near the surface. This 
implicity assumes that /*r,eff = /*e,eff, and so 
for convenience these effective viscosities will 
be assumed equal to a common value, pefr. and 
equation (16) can be rewritten for a unity 
Prandtl number (where peff = A.,,,/C,), as 

$(C,T + $V,z + +V;) + 

Equation (21) can be considerably simplified for 
the case of an incompressible fluid, where fl = 0, 
and for a perfect gas, where B = l/T. For each 
of these cases it is convenient to introduce a 
total enthalpy, 5, where : 

h = C,T + +v2+ $V$: perfect gas 

ti = C,T + lV,Z + at’: + p/p : incompressible 
fluid 

and equation (21) can be rewritten as : 

In order to show the similarity between this 
energy equation and the tangential momentum 
equation, equation (14) can be expressed as : 

1 . (23) 
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The analogy between equations (22) and (23) 
is complete if the initial and boundary con- 
ditions are similar, such that: 

I) = $0: rv+) = w2, kl = cr2 

$ = $, : rVim = 0, h, = constant. 

Under these conditions, the distribution of 
tangential velocity and total enthalpy will be 
similar, and as a consequence : 

__s h-kc 
h, -Ii, wr 

In particular 

whence from equation (24) 

(24) 

(25) 

On the rotating disc the heat flux is given by: 

q0 = - 2 [C,(T, - T,) - &02r2] (26) 

which leads to the important result that for the 
case of q,, = 0 the adiabatic disc temperature, 
for an incompressible fluid or a perfect gas, 
T ,,ad, is given by: 

TO,ad = T, + jm2r2/C, (27) 

This result agrees with the findings of Riley 
[6] and Mabuchi et al. [7], who solved the 
incompressible laminar energy equation for 
the free disc. It is interesting to observe that 
T ,,ad is unaffected by the radial velocity, and 
corresponds to an adiabatic plate temperature 
for a free stream velocity of or. 

As a consequence of equation (26) it is 
apparent that the Nusselt numbers given by 
equations (11) and (12) are valid, within the 
limits of the assumptions made, even when 
frictional heating is significant, providing equa- 
tion (27) is employed for the adiabatic disc 
temperature used in defining the Nusselt num- 
bers. 

5. THE REYNOLDS ANALOGY APPLIED TO A 
DISC ROTATING NEAR A STATOR 

The turbulent free disc analysis of Karman 
has been extended by Schultz-Grunow [8] 
and Daily and Nece [9] to produce moment 
coefficients for the enclosed disc, illustrated 
in Fig. lb. Also Bayley and Owen [lo] and 

Table 1. Moment coeficients and Nusselt numbers for forced radial outfow between a rotating and a stationary disc 

Author Measurements Empirical correlation Range 

Sedach [ 1 l] Moment C 
coefficients 

MO = 0.078 Re-“” + 0.127 (C,/CRe)0’5 G 
0.1 < G < 0.3 
0.25 x lo6 < Re < 1.7 x lo6 
0 < Re. < 0.059 

Kreith et a[. 
Mass 

WI 
transfer Eu = (+G)0’55[1.36 + 1.29(Re/10s) + +57(Re/10s)z 0.012 < G < 0.06 

(Pr = 2.4) - 3.51(Re/105)3 + 1~84(Re/105)4](C,/2nG)~o~*3~o~1* ‘e/lo’) 
0 < Re < 4 x lo4 
0.13 < Re, < r, 

~_______ ____ 

Mitchell 
Heat G = 0.113 

[I31 
transfer i3u = 1.22 CE’16 

(Pr = 0.72) 
1.7 x lo4 < c, < 7.4 x 104 
Re, = 0.53,0.29,0.14 

Kapinos 
[I41 

Heat 
transfer 

(Pr = 0.72) 
flu = 00261 (C,/GRe)“’ Re”* G”‘06 

0.016 < G < 0.06 
0.5 x lo6 c Re < 4 x 10’ 
0.012 -z Re, < 0.1 
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Sedach [ 1 l] have measured moment coefficients 
for the case of a disc and stator with a radial 
outflow of coolant, as illustrated in Fig. lc. 
For the latter case, it has been shown that for 
small gap ratios (G < 0.1, where G = s/r,,) the 
whole space between the rotor and stator can 
be treated as a boundary layer. Whilst it is 
not necessarily true that p,,,rr = pg,,rf for the 
case of a radial outflow of fluid, in practical 
cases-such as air-cooled turbine rotors-the 
tangential velocity component is usually larger 
than the radial component. Near the turbine 
rotor the dissipation due to the radial com- 
ponents is much smaller than that due to the 
tangential component, hence the radial dissipa- 
tion terms have very little effect on heat transfer. 
Owen [ 151 has shown that equation (27) is still 
valid if the radial dissipation terms are neglected, 
but for convenience it will be considered that 
/Lo, eff = ,Q,, ,_rr such that the results of Section 4 

O-2 
/ I Illlib I 

02 0.3 0 4 06 06 I , 2 3 4 

FIG. 2. Reynolds analogy applied to the moment coefficients 
of Sedach: G = 006. 

will still be applicable. As the frictional moment 
of the front-or stator side face-of the rotating 
disc will not, for radial outflow, be equal to 
that on the back--or free side-it is apparent 
that equation (12) will only be valid if it is 
modified to : 

iJu = Re C,,,pc (28) 

where C,,,, = M,/(&m2r~), M, being the fric- 
tional moment on the stator-side face of the 
disc. 

6 

4 

p 

I$ 2 1 

2 

06 

2- 

0. t - 

uE OB- 

8 06- 

04 - 

FIG. 3. Reynolds analogy applied to the moment coefficients 
of Bayley and Owen : G = 0.03. 

Owing to the assumptions made, equation 
(28) will only apply for Pr = 1 and for the 
boundary conditions 

Z=0:V~,=wr,h,=cr2 

z = s: v,,, = 0, h, = constant. 
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However, in [15] it has been shown that 
Dorfman’s corrections for the effect of disc 
temperature distribution and arbitrary Prandtl 
numbers on the Nusselt number are reasonably 
valid for the case of a radical outflow. These 
corrections can be summarised for turbulent 
flow as : 

KJ(Pr) + lw6 ivu(Pr = 1) (29) 

n + 2% o.2 
Ru(n) + --gg-- ( > Ak(?t = 2) (30) 

where it is assumed that A, = cr”, c and n being 
constants. 

The experiments of Kreith et al. [ 121, 
Mitchell [13] and Kapinos [14], which are 
summarised in Table 1, provide data for testing 
the Reynolds analogy applied to rotating discs 
with radial outflow. The results of Kreith et al. 
and Mitchell show little effect of rotational 
Reynolds number on the Nusselt number, but 
indicate that heat-transfer is governed primarily 
by mass flow rate. On the other hand, Kapinos’ 

I I I I,11111 1 I , 

0.1 0,2 04 Q6 08 I 2 4 

&?/IO6 

Fro. 4. Reynoi+ analoey applied to the moment coeffcients 
of Bayley and Owen : G = @12. 
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results show a marked effect of rotational 
Reynolds number on heat-transfer, with only a 
relatively small increase due to mass flow rate. 
For the Nusselt number to be independent of 
Reynolds number it is necessary-according to 
equation (28)-that C+ aRev’. In a recent, as 
yet unpublished, analysis [ 181 using the integral 
momentum equations, solutions have been 
obtained showing that for Re, > 0.875, 
C+, aRep [where Re, = CJ2nGRe) and C, 
f W/(pro)]. The value of Re, > 0.875 stems 
from mathematical rather than physical argu- 
ments, but it is interesting to note from Table 1 
that the values of Re, for the experiments of 
Mitchell and Kreith et al. are larger than those 
of Sedach and Kapinos. Hence, it is not sur- 
prising that the Reynolds analogy applied to 
the results of Sedach in Fig. 2 show similar 
trends to the results of Kapinos. It should be 
pointed out that in Fig. 2, and subsequent 
figures, the effect of Prandtl number has been 
accounted for using equation (29). Also, as the 
experimental ranges of the various experiments 
do not in general coincide, it has been necessary 
to extrapolate results outside of their stated 
range of validity. 

Figures 3 and 4 show the Reynolds analogy 
applied to the moment coefficients of Bayley 
and Owen, and a definite transition between 
the results of Kapinos and Kreith et al. can be 
seen. Mitchell’s results, strictly valid for G = 
0.113, are shown in Fig. 3 to lie below the 
results of Kreith et al. Despite the fact that the 
experimental ranges do not coincide, the Rey- 
nolds analogy points out the transition between 
the rotation dominated regime and the area 
controlled by mass flow rate. 

For the case of axial flow turbines, the con- 
figuration shown in Fig. Id is a model of an 
air-cooled turbine rotor where peripheral 
shrouds are used to control the egress of 
coolant and to prevent the ingress of hot gases. 
The fluid dynamics of this system have been 
investigated [17], and whilst the presence of a 
shroud invalidates the boundary layer assump- 
tions, a qualitative guide to heat-transfer should 

be gained by applying the Reynolds analogy 
to measured moment coefficients. The expected 
trends are shown in Fig. 5, where the effect of 
decreasing the clearance ratio G, (where 
G, = s,/r,,) is to increase the moment coefficients 
and hence the Nusselt numbers. It should be 
pointed out that the advantage of increased 
Nusselt number at small clearance ratios is 
likely to be offset by the increase in frictional 

\ /' 

02/ 
&/IO6 

Reynolds analogy applied to shrouded disc: G = 0.12. F-10. 

heating due to the presence of the shroud, and 
the adiabatic disc temperature given by equa- 
tion (27) will not be valid. 

6. CONCLUSIONS 

This paper has been described the application 
of the Reynolds analogy to rotating disc 
systems, and the principal conclusions to be 
drawn from this work are: 

(1) The Reynolds analogy can be applied to 
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the free disc when frictional heating is significant 
if 

(i) 

(ii) 

(iii) 

(iv) 

the laminar and turbulent Prandtl num- 
bers are unity ; 
the disc temperature varies quadratically 
with radius and the total enthalpy of the 
free stream is constant ; 
the ‘effective’ radial and tangential vis- 
cosities are equal ; 
the initial tangential velocity and total 
enthalpy distributions are similar. 

Under these conditions, the average Nusselt 
number, ma, is related to the moment coefficient, 
C,, by JVu = ReCJ(2z); and for compressible 
or incompressible fluids the adiabatic disc 
temperature is related to the free stream tem- 
perature by: To, ad = T, + &02r2/C, 

(2) The Reynolds analogy can be applied to 
the totally enclosed rotating disc, or the disc 
rotating near a stator with a radial outflow of 
coolant, if conditions (i), (ii), (iii) and (iv) apply- 
with the exception that the total enthalpy on 
the stator surface is constant. For the case of a 
forced outflow between a rotating and stationary 
disc, the mean Nusselt number is related to the 
moment coeffkient of the stator-side rotor 
face, Cm,,, by mu = ReC,,&, and the adiabatic 
disc temperature is related to the stator tem- 
perature by To,ad = T, + &a2r2/C, 

(3) The Reynolds analogy applied to measured 
moment coeffkients for the case of a forced 
radial outflow between a rotating and a sta- 
tionary disc shows that the Nusselt number is 
controlled principally by mass flow rate when 
the ratio of radial to rotational Reynolds 
number, Re, exceeds a certain value (approxi- 
mately, Re, > 0875) and by rotational Reynolds 
number for Re, less than the critical value. 
Nusselt numbers calculated in this way form a 
transition between heat transfer measurements 
at low Re, and the measurements at high Re,.. 

For the case of a shrouded disc, the Nusselt 
number is expected to increase with decreasing 
shroud clearance-for a given mass flow rate- 
but the advantage of larger Nusselt numbers 

will be partially offset by an increase in frictional 
heating and higher adiabatic disc temperatures. 
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L'ANALoGIE DE REYNOLDS APPLIQU~E A UN ~~UI.E~~ENT ENTRE UN DISQUE 
TOURNANT ET UN DISQUE FIXE 

R&annget article montre comment on peut elargir le principe de l’analogie de Reynolds appliqub 
par Dorfman [I] B un disque libre, de faGon & tenir compte des effets de dissipation par frottement dans un 
&couiement compressible ou incompressible. Pour un Ccoulement turbulent le nombre “effectif’ de 
Prandtl est pris &gal & l’unite, et on suppose &gales les viscositCs radiales et tangentielles “effectives”. La 
tempkrature adiabatique du disque trouvie correspond B celle obtenue anttrieurement par les auteurs 
[6,7] pour un &coulement laminaire et un nombre de Prandtl unitaire, et est en accord avec la tempkrature 
adiabatique d’une plaque plane. On montre que, sous certaines conditions. il est possible d’appliquer 
I’analogie de Reynolds & un disque tournant pres d’un stator, avec ou sans Ccoulement radial surimpost du 
fluide. Dans le cas d’un Bcoulement for&, I’analogie de Reynolds appliqu&e B des coefficients mesur&s 
montre que le nombre de Nusselt est con&I& par le d&bit massique pour des rapports iievis du nombre 
de Reynotds radial au nombre de Reynolds rotationnel. et qu’elle depend en premier du nombre de Rey- 

nolds rotationnel pour des faibles rapports des nombres de Reynolds. 

DIE REYNOLDS-ANALOGIE, ~~NGEWANDT AUF DIE S~~MUNG ZWISCHEN EINER 
ROTIERENDEN UND EINER FES~TEHENDEN SCHEIBE 

Zusammenfassung-Diese Abhandlung beschreibt die Anwendung der Reynolds-Analogie nach Dorfmann 
(1)fiireinefreie Scheibe, urn Reibungseffektein kompressibler und inkompressibler Strijmungeinzubeziehen. 

In turbulenter Strijmung wird die effektive Prandtl-zahl gleich eins gesetzt. Die effektiven Ziihigkeiten 
in radialer und tangentialer Richtung werden einander gleichgesetzt. Die adiabate Scheibentemperatur 
erweist sich als identisch mit den Ergebnissen friiherer Autoren (6) (7) Rir Iaminare StrGmung und einer 
Prandtl-zahi gleich eins und als ~bereinstimmend mit der adiabaten Temperatur einer ebenen Platte. Es 
wird gezeigt, dass unter gewissen Bedingungen die ReynoId~aiog~ auf eine in der N5he dea Stators 
rotierende Scheibe angewandt werda kann, mit und ohne einer radial nacb aussen iiberlagerten Striimung 
des Fluids Fiir den Fall einer erzwungenen Striimung nach aussen wird die Reynoldsanalogie auf die 
gemessenen momentanen Koeffizienten angewandt Es zeigt sich, dass die Nusselt-Zahl bei grossen Ver- 
hliltnissen von radialer Reynoldszahl zur Reynoldszahl der Rotation vom Massenstrom und bei niedrigen 

Reynoldzahlen vorwiegend von der Reynoldszahl der Rotation bestimmt wird. 

I’IPHMEHEHnE AHASIOIXM PE~HOJII$CA IE TEUIEHEIK) MEXaY 
BPAIIJAIOIIJHMCFI H HEIIOflBMHHbIM AYrGHOM 

AHHoT-+-IIoKaaaHo, HaH npYrmeHeHne aHajlorHa PeZtnoJrbgca K CBO~O&KOMY wacky, 
npexno2KeaKoe fiop@faHom (I), MoweT 6b1~b pacwHpeK0, BHJXIOYaR BJIHIIHHe ~HCXlHIalWiXS 

TpeHnew ~c~~~ae~oM ~nfl Kec~~ae~oM noToKe.C~e~aHo ~o~y~eH~e,~~o ~~~Typ6y~eK- 
~~0r0 noToKa ~a~KT~BHoe~ %ic3fo ~paH~~~ pa3HO exhume, a p~a~bKa~ B TaH- 
reaqsfajrbaasf ~~~~eK~BHa~~B~~KocTb pawat. Ha&zeKo,qTo ~Ka6a~~ecxa~Te~~epaT~a 
RucKa TowgecTseHHa TemfiepaType, npsyYeHKoi aslropamkl paHee (6),(7)~xnn aaniatiapHor0 
nOTOKa npu YklcjIe npaH&TJIfi I, M CornacyeTcff C aAMa6aTasecKo8 TemnepaTypoti IlJrOCKOfi 
nnacTHKbl. IIolEaaaHo, 4~0 npvr 0npefieJieaHblx ycnoswsx aHaaorafi PeiWoxbaca MoweT 
6nTbnpK~e~e~a~~~cKy,Bpa~a~~e~yc~Boa~eaeno~sEiHc~oro,cnaao~e~~~~pa~~aJrbKbI~ 
OT~-OKOM mxqtoc~xa 6ea o~orca.~~~e~y~a~sn~ym~e~~orooTToKaa~ajror~~ Peimoabgca 
~P~MeHeHaK~a~epeHH~M ~rKoBeKH~ KO~QI~P~~~H~HT~M,~Z~OK~~~HO,UTO~HC~O HycceAbTa 
3awczT 0T MaccoBo~ CKO~OCTX IlpM 6o~b~Kx 0TKo~eH~~x pa~a~bHOr0 9ncza Pe~Ko~b~ca 
K BpamaTeJlbIiOMy SWJly Pe#HoJIbRCa II Onpel&eJIRoT'%i, fJIaBffEitM 06pa8OM, EpZUX@TeJIbHbiM 

YHC~OM PettHoabnca npzi ManhIx 0Tnotuewiffx wcen Petaoabxca. 


